更多>>人气最旺专家

川岛得爱

领域:中国经济网陕西

介绍:根据厅党组“两学一做”学习教育实施方案的要求,一年,积极参加了厅里组织的各项学习,积极参加处里的组织生活,也认真进行了自学,撰写了读书笔记。...

李鹏越

领域:消费日报网

介绍:(3)读取三个变量的坐标数值总和是100%。ag环亚集团,ag环亚集团,ag环亚集团,ag环亚集团,ag环亚集团,ag环亚集团

ag88网页娱乐
本站新公告ag环亚集团,ag环亚集团,ag环亚集团,ag环亚集团,ag环亚集团,ag环亚集团
qi1 | 2019-01-24 | 阅读(177) | 评论(193)
PAGE第1课时 等比数列的前n项和课后篇巩固探究                 A组1.已知数列{an}的通项公式是an=2n,Sn是数列{an}的前n项和,则S10等于(  )解析∵an+1an=2n+12n=2,∴S10=2(1-210)答案D2.在等比数列{an}中,a2=9,a5=243,则{an}的前4项和为(  )解析因为a5a2=27=q3,所以q=3,a1=a2q=3,S4答案B3.已知等比数列{an}的前n项和为Sn,且a1+a3=,a2+a4=,则Snan=解析设公比为q,则q=a2于是a1+a1=,因此a1=2,于是Sn=21-12n1-12=41-12n,而答案D4.在14与之间插入n个数组成一个等比数列,若各项总和为778,则此数列的项数为(  解析设a1=14,an+2=,则Sn+2=14-解得q=-.所以an+2=14·-1解得n=3.故该数列共5项.答案B5.已知首项为1,公比为的等比数列{an}的前n项和为Sn,则(  )====3-2an解析在等比数列{an}中,Sn=a1-anq1-答案D6.对于等比数列{an},若a1=5,q=2,Sn=35,则an=     .解析由Sn=a1-anq1-q答案207.在等比数列{an}中,设前n项和为Sn,若a3=2S2+1,a4=2S3+1,则公比q=    .解析因为a3=2S2+1,a4=2S3+1,两式相减,得a4-a3=2a3,即a4=3a3,所以q=a4答案38.数列12,24,38,…,n2解析∵Sn=12+222+Sn=122+223由①-②,得Sn=12+122+123∴Sn=2-12答案2-19.已知等比数列{an}满足a3=12,a8=,记其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若Sn=93,求n.解(1)设等比数列{an}的公比为q,则a3=所以an=a1qn-1=48·12(2)Sn=a1(1-由Sn=93,得961-12n=10.导学号04994046已知等差数列{an}的首项为a,公差为b,方程ax2-3x+2=0的解为1和b(b≠1).(1)求数列{an}的通项公式;(2)若数列{an}满足bn=an·2n,求数列{bn}的前n项和Tn.解(1)因为方程ax2-3x+2=0的两根为x1=1,x2=b,可得a-3+2=0,ab2-3b+2=0(2)由(1)得bn=(2n-1)·2n,所以Tn=b1+b2+…+bn=1×2+3×22+…+(2n-1)·2n,①2Tn=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1,②由①-②,得-Tn=1×2+2×22+2×23+…+2·2n-(2n-1)·2n+1=2(2+22+23+…+2n)-(2n-1)·2n+1-2=2·2(1-2n)1-2-(2n-1)·2n+1-2=(3所以Tn=(2n-3)·2n+1+组1.等比数列{an}的前n项和为Sn,若S2n=3(a1+a3+…+a2n-1),a1a2a3=8,则Sn=++1解析显然q≠1,由已知,得a1(1-q整理,得q=2.因为a1a2a3=8,所以所以a2=2,从而a1=1.于是Sn=1-2n1-2答案A2.已知数列{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列1an的前5项和为(或解析由题意易知公比q≠1.由9S3=S6,得9·a1(1-所以1an所以其前5项和为S5=1×答案C3.在等比数列{an}中,a1+a2+…+a5=27,1a1+1a2+…+1a5A.±±解析设公比为q,则由已知可得a两式相除,得a12q4=9,即a32=9,所以a答案C4.若等比数列{an}的前n项和为Sn,且S1,S3,S2成等差数列,则{an}的公比q=    .解析由题意,得a1+(a1+a1q)=2(a1+a1q+a1q2),又a1≠0,q≠0,故q=-.答案-+322+423+解析设Sn=1+322+423+…+n2n-1+n+12n,则Sn=22所以Sn=3-n+3答案3-n6.若等比数列{an}的【阅读全文】
ag环亚集团,ag环亚集团,ag环亚集团,ag环亚集团,ag环亚集团,ag环亚集团
dgd | 2019-01-24 | 阅读(60) | 评论(144)
1、询价单订阅:用户在活动时间内订购诚信通成功后,系统自助赠送询价单订阅免费体验12个月,诚信通关闭该功能自动失效。【阅读全文】
qq2 | 2019-01-24 | 阅读(390) | 评论(576)
我发现,做销售的,上过大学的少,而大学是学这个专业的就更少。【阅读全文】
juw | 2019-01-24 | 阅读(591) | 评论(75)
我们这次来解决中国问题,在国民会议席上,第一点就是要打破军阀,第二点就是要打破援助军阀的帝国主义者。【阅读全文】
obw | 2019-01-24 | 阅读(723) | 评论(498)
用户服务条款尊敬的用户:您好!欢迎光临文档投稿赚钱网站。【阅读全文】
0pj | 2019-01-23 | 阅读(117) | 评论(742)
他这个网站算是比较正规的,不是刷信誉那些东西。【阅读全文】
ly1 | 2019-01-23 | 阅读(604) | 评论(504)
 微积分基本定理学习目标重点难点1.会用定积分求曲边梯形的面积.2.直观了解微积分基本定理的含义.重点:微积分基本定理及利用定理求定积分.难点:利用定积分求较复杂的图形的面积.微积分基本定理对于被积函数f(x),如果F′(x)=f(x),则eq\i\in(a,b,)f(x)dx=__________,亦即____________=F(b)-F(a).预习交流1做一做:eq\i\in(0,1,)x2dx=________.预习交流2做一做:eq\i\in(0,π,)(cosx+1)dx=________.预习交流3议一议:结合下列各图形,判断相应定积分的值的符号:(1)eq\i\in(a,b,)f(x)dx____0(2)eq\i\in(a,b,)g(x)dx____0(3)eq\i\in(a,b,)h(x)dx____0在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引F(b)-F(a) eq\i\in(a,b,)F′(x)dx预习交流1:提示:eq\f(1,3)预习交流2:提示:∵(sinx+x)′=cosx+1,∴eq\i\in(0,π,)(cosx+1)dx=eq\i\in(0,π,)(sinx+x)′dx=sinπ+π-(sin0+0)=π.预习交流3:提示:(1)> (2)< (3)>一、简单定积分的求解计算下列各定积分:(1)eq\i\in(0,2,)xdx;(2)(1-t3)dt;(3)eq\i\in(1,2,)eq\f(1,x)dx;(4)(cosx+ex)dx;(5)eq\i\in(2,4,)t2dx;(6)eq\i\in(1,3,)eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x2)))dx.思路分析:根据导数与积分的关系,求定积分要先找到一个导数等于被积函数的原函数,再据牛顿—莱布尼茨公式写出答案,找原函数可结合导数公式表.1.若eq\i\in(0,1,)(2x+k)dx=2,则k=________.2.定积分sin(-x)dx=________.3.求下列定积分的值:(1)eq\i\in(1,2,)eq\r(x)dx;(2)eq\i\in(2,3,)eq\f(1-x,x2).微积分基本定理是求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意y=eq\f(1,x)的原函数是y=.求定积分时要注意积分变量,有时被积函数中含有参数,但它不一定是积分变量.3.定积分的值可以是任意实数.二、分段函数与复合函数定积分的求解计算下列定积分:(1)eq\i\in(2,5,)|x-3|dx;(2)sin2xdx;(3)e2xdx思路分析:被积函数带绝对值号时,应写成分段函数形式,利用定积分性质求解.当被积函数次数较高时,可先进行适当变形、化简,再求解.1.设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,0≤x1,,2-x,1x≤2,))则eq\i\in(0,2,)f(x)dx=__________.2.(1)设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x≤0,,cosx-1,x0,))求f(x)dx;(2)求eq\r(x2)dx(a>0).1.分段函数在区间[a,b]上的积分可化成几段积分之和的形式,分段时按原函数的各区间划分即可.2.当被积函数的原函数是一个复合函数时,要特别注意原函数的求解,与复合函数的求导区分开来.例如:对于被积函数y=sin3x,其原函数应为y=-eq\f(1,3)cos3x,而其导数应为y′=3cos3x.三、由一条曲线和直线所围成平面图形的面积的求解已知抛物线y=4-x2.(1)求该抛物线与x轴所围成图形的面积;(2)求该抛物线与直线x=0,x=3,y=0所围成图形的面积.思路分析:画出图形,结合图形分析定积分的积分区间,同时注意面积与积分的关系.1.抛物线y=x2-x与x轴围成的图形面积为__________.2.曲线y=cosxeq\b\lc\(\rc\)(\a\vs4\al\co1(0≤x≤\f(3π,2)))与坐标轴所围成的面积为________.3.(2012山东高考)设a>0.若曲线y=eq\r(x)与直线x=a,y=0所围成封闭图形的面积为a2,则a=__________.利用定积分求曲线所围成的平面图形的面积的步骤:(1)根据题意画出图形;(2)找出范围,定出积分上、下限【阅读全文】
p9r | 2019-01-23 | 阅读(68) | 评论(751)
结果又回到原来困惑上:为什么渡河?究竟是什么驱使一个人急急奔赴死亡?答案只有一个:强大到疯狂的人格力量。【阅读全文】
ag环亚集团,ag环亚集团,ag环亚集团,ag环亚集团,ag环亚集团,ag环亚集团
gy9 | 2019-01-23 | 阅读(348) | 评论(993)
海关总署公告截图日本农林水产省对中国的决定表示欢迎,称将继续坚持不懈地展开劝说工作。【阅读全文】
bdy | 2019-01-22 | 阅读(67) | 评论(574)
浙江大学硕士学位论文目录3.2.2.1菌种的富集筛选与鉴定…………………………………………253.2.2.2挑选的菌株对PCB61的降解能力研究…………………………253.3结果与讨论……………………………………………………………………263.3.1分离茵的鉴定结果………………………………………………………..263.3.2高效降解菌的挑选………………………………………………………..283.3.3T29和W5的分类鉴定…………………………………………………..283.3.4生长曲线…………………………………………………………………..293.3.5两种菌对不同的碳源的利用情况……………………………………….303.4本章小结………………………………………………………………………314微生物降解PCBS性能研究………………………………………………………………..324.1引言…………………………………………………………………………….324.2材料与方法……………………………………………………………………324.2.1实验材料………………………………………………………………….324.2.2实验方法…………………………………………………………………..334.2.2.1添加不同碳源对微生物群落降解PCBl242的影响……………334.2.2.2添加不同碳源对Bacillussp.T29和Corynebacteriumsp.W5降解PCBl242的影响…………………………………………………………………….334.2.2.31PCB242对Bacillussp.W5的联苯和sp.T29和Corynebacterium苯甲酸趋药性的影响研究…………………………………………………………一334.2.2.4不同重金属对Bacillussp.T29的苯甲酸趋药性的影响研究….344.3结果与讨论……………………………………………………………………344.3.1添加不同碳源对微生物群落降解PCBl242的影响……………………344.3.2添加不同碳源对Bacillussp.T29和Corynebacteriumsp.W5降解PCBl242的影响………………………………………………………………..354.3.3PCBl242对Bacillussp.T29和Corynebacteriumsp.W5的联苯和苯甲酸趋药性的影响研究………………………………………………………………364.3.4不同重金属对Bacillussp.T29的苯甲酸趋药性的影响研究………….374.4本章小结………………………………………………………………………385全文研究结论与展望……………………………………………………………………39III浙江大学硕士学位论文目录5.1研究结论………………………………………………………………………395.2研究展望………………………………………………………………………395.3创新点…………………………………………………………………………………………………40参考文献………………………………………………………………………………………………….4l攻读硕士期间获得成果…………………………………………………………………….48【阅读全文】
gya | 2019-01-22 | 阅读(69) | 评论(303)
”——孙中山在《民报》创刊周年大会的演说“欧美为甚不能解决社会问题?因为没有解决土地问题。【阅读全文】
lol | 2019-01-22 | 阅读(493) | 评论(293)
”活动中心科技部的一位老师说,他们的编程学习也包括scratch,但不会花费大量时间,最多30次课,“对多数低年龄段的孩子来说,他所学习的scratch,更多是一种模仿,比如做了一个作品出来,但他未必能理解为什么要这么做。【阅读全文】
hyw | 2019-01-22 | 阅读(134) | 评论(81)
这主要是因为它能增加大脑中使人愉悦的5-羟色胺物质的含量。【阅读全文】
9co | 2019-01-21 | 阅读(321) | 评论(604)
用户服务条款尊敬的用户:您好!欢迎光临文档投稿赚钱网站。【阅读全文】
v9u | 2019-01-21 | 阅读(735) | 评论(489)
(3)税收是国家实现经济监督的重要手段。【阅读全文】
本站互助
共5页

友情链接,当前时间:2019-01-24

www.w66.com 利来国际旗舰厅 利来国际娱乐平台 利来国际w66手机版 利来国际w66手机版
利来国际w66最新 利来国际w66网页版 利来国际在线客服 国际利来旗舰厅 利来娱乐w66
w66.C0m 利来娱乐国际 利来国际最给力老牌 利来国际老牌 利来娱乐ag旗舰厅
利来国际老牌软件 利来娱乐国际 利来娱乐 利来国际w66 利来娱乐w66
珲春市| 南雄市| 兴业县| 双桥区| 区。| 常山县| 象山县| 吴川市| 镇康县| 尼勒克县| 偃师市| 宾阳县| 颍上县| 海伦市| 广宁县| 珲春市| 鹤庆县| 会同县| 酒泉市| 靖江市| 琼结县| 呼图壁县| 河曲县| 沂源县| 潮安县| 禄丰县| 都江堰市| 勐海县| 景德镇市| 丰都县| 龙州县| 特克斯县| 雅安市| 磐安县| 新野县| 买车| 博罗县| 乡城县| 自治县| 布拖县| 镇平县| http://m.54311014.cn http://m.72635990.cn http://m.08844638.cn http://m.97190167.cn http://m.97181395.cn http://m.82059835.cn